Cours de Conversion d'énergie, 5_c semestre bachelor Examen du 18.10.2019, partie I

		Questions
		2 points à disposition en totale pour cette partie
	$\square 0 \ \square 0$	Pour chaque question il y a exactement une réponse correcte.
	$\Box 1 \ \Box 1$	Si vous avez choisi:
	$\square 2 \ \square 2$	 la seule réponse correcte → +0.2 points;
	$\square 3 \ \square 3$	 une seule réponse incorrecte → -0.06 points;
	$\square 4 \ \square 4$	 0 ou plus d'une réponse → 0 points.
	$\Box 5 \ \Box 5$	←Vous encodez votre numéro de SCIPER ici et écrivez votre
	$\square 6 \ \square 6$	nom complet dans la case ci-dessous ↓
	$\Box 7\ \Box 7\ \Box 7\ \Box 7\ \Box 7\ \Box 7$	1
	$\square 8 \square 8 \square 8 \square 8 \square 8 \square 8$	Nom et prénom :
	$\square 9 \square 9 \square 9 \square 9 \square 9 \square 9$	
_		1/6 1/1 1 1 1 1/1 1 1 1 1 1 1 1 1 1 1 1
Qı	=	définition de la capacité thermique à pression constante c_p ?
Ш		u'il faut fournir à un corps pour élever d'un degré la température de
v	l'unité de masse de ce ce	1
Α		u'il faut fournir à un corps pour élever d'un degré la température de
		orps à pression constante.
Ш		u'il faut fournir à un corps pour élever d'un degré la température de
		orps à enthalpie constante.
	1 0 1	u'il faut fournir à un corps pour élever d'un degré la température de
	l'unité de masse de ce ce	orps à énergie interne constante.
Oı	uestion 2 – Dans line tra	nsformation adiabatique d'un système thermodynamique, on a que :
\(\tau_{\tau} \)		gie interne est positif si le travail reçu par le système est négatif.
\mathbf{Y}	-	gie interne est égal au travail reçu par le système.
_	_	plique aucun échange de travail.
	-	
Ш	La quantité de chaieur é	changé et toujours positive.
Oı	uestion 3 – La différence	e entre les taux des moments de la quantité de mouvement à l'entrée
	à la sortie d'une turbine h	
	A la chaleur transmise à	•
	Au travail transmis par	-
X		
	A la force appliquée par	l'air sur le disque actuateur de la turbine
Qι	nestion 4 – Si la vitesse a	bsolue α a l'entrée d'une turbine hydraulique est 18 m/s et le travail
		le grade de réaction est égal à:
	0.54	
	0	
	0.56	
\mathbf{X}	0.46	

Qι	uestion 5 – La limite de Lanchester-Betz est :
	Un paramètre de design d'une turbine éolienne
	La valeur maximale de la force de poussée appliqué sur le disque actuateur
	La puissance maximale extraite par la turbine éolienne
X	La valeur maximale (i.e. limite) du rendement d'une turbine éolienne à axe horizontale par rapport à l'énergie cinétique contenue dans le 'streamtube'
Qı	uestion 7 – L'équation de Gibbs permets de :
X	Calculer les quantités de travail et chaleur dans les transformations thermodynamiques
	respectivement adiabatique et sans-travail à travers les variations d'enthalpie du système.
	Calculer toujours les quantités de chaleur échangée par le système.
	Calculer toujours les quantités de travail échangé par le système.
Ц	Calculer le rendement thermodynamique du système.
sys	lestion 8 – Dans un cycle de Rankine, une turbine génère 500 MW de travail (en sortie du stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par
sys	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ?
sys	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW
sys la s	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ?
sys la s	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW
sys la s	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW 200 MW
sys la s	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW 200 MW Lestion 9 – Dans le distributeur d'une turbine hydraulique on a que : La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est
system is system. System is sy	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW 200 MW Lestion 9 – Dans le distributeur d'une turbine hydraulique on a que : La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est à action. La hauteur piézométrique est transformée complètement en énergie cinétique si la turbine
systal sy	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW Lestion 9 – Dans le distributeur d'une turbine hydraulique on a que : La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est à action. La hauteur piézométrique est transformée complètement en énergie cinétique si la turbine est à reaction. La hauteur piézométrique est transformée entièrement en énergie gravitationnelle si la
sys lass	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW 200 MW La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est à action. La hauteur piézométrique est transformée complètement en énergie cinétique si la turbine est à reaction. La hauteur piézométrique est transformée entièrement en énergie gravitationnelle si la turbine est à reaction.
systlas	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW Lestion 9 – Dans le distributeur d'une turbine hydraulique on a que : La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est à action. La hauteur piézométrique est transformée complètement en énergie cinétique si la turbine est à reaction. La hauteur piézométrique est transformée entièrement en énergie gravitationnelle si la
systlas	source chaude? 500 MW 700 MW 1200 MW 200 MW La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est à reaction. La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est à reaction. La hauteur piézométrique est transformée complètement en énergie gravitationnelle si la turbine est à reaction. La hauteur piézométrique est transformée entièrement en énergie gravitationnelle si la turbine est à reaction. La hauteur piézométrique est transformée entièrement en énergie gravitationnelle si la turbine est a action. La chute utile est transformée complètement en énergie gravitationnelle si la turbine est à
systlas	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW 200 MW mestion 9 – Dans le distributeur d'une turbine hydraulique on a que : La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est à action. La hauteur piézométrique est transformée complètement en énergie cinétique si la turbine est à reaction. La hauteur piézométrique est transformée entièrement en énergie gravitationnelle si la turbine est à reaction. La chute utile est transformée complètement en énergie gravitationnelle si la turbine est à réaction. La chute utile est transformée complètement en énergie gravitationnelle si la turbine est à réaction. Le chute utile est transformée complètement en énergie gravitationnelle si la turbine est à réaction. Le chute utile est transformée complètement en énergie gravitationnelle si la turbine est à réaction.
System	stème). Le condensateur cède 700 MW à la source froide. Quelle est la puissance donnée par source chaude ? 500 MW 700 MW 1200 MW 200 MW nestion 9 – Dans le distributeur d'une turbine hydraulique on a que : La hauteur piézométrique est transformée entièrement en énergie cinétique si la turbine est à action. La hauteur piézométrique est transformée complètement en énergie cinétique si la turbine est à reaction. La hauteur piézométrique est transformée entièrement en énergie gravitationnelle si la turbine est a action. La chute utile est transformée complètement en énergie gravitationnelle si la turbine est a réaction. nestion 10 – En utilisant le diagramme <i>T-s</i> de l'eau de la Figure 1, quelle est l'état pour de au avec une enthalpie massique (courbes rouges) de 2000 kJ/kg et une température de 0 °C ? Vapeur surchauffée avec une entropie massique <i>s=</i> 7.2 kJ/(kg °K)

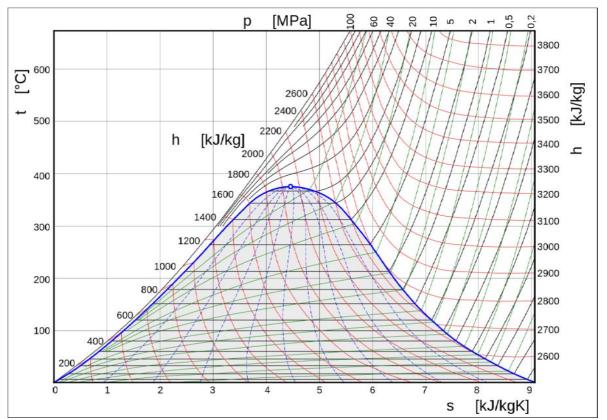


Figure 1. Diagramme *T-s* de l'eau

Exercice #1 (2 points)

Une centrale électrique utilise un cycle de Brayton pour produire de l'électricité. On a que la puissance électrique généré (i.e. travail net du cycle) est de 10 MW. Le rendement est mesuré par le système de supervision de la centrale et égal à 31.5%.

La pression à l'entrée du compresseur est de 1 bar avec une température de 310°K et la pression de sortie du compresseur est de 6 bars. La température de sortie de la turbine est de 810°K.

Hypothèses

- l'air et les gaz de combustion (i.e. avant et après la chambre de combustion) sont assimilables à des gaz parfaits ;
- le rendement de la génératrice électrique connectée à la turbine-compresseur de la centrale est unitaire ;
- les variations des énergies cinétique et potentielle sont négligeables;
- les transformations thermodynamiques dans la turbine et dans le compresseur sont isentropiques; par conséquence, on a que les états thermodynamiques #1 et #2 $\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\Gamma}$, ou le facteur calorifique de l'air $\Gamma = 0.2857$; donc, on peut calculer les puissances-travaux de la turbine et du compresseur à travers les variation d'enthalpie : ${}^b_a \dot{W} = \dot{m} c_p (T_a T_b);$
- la capacité thermique à pression constante de l'air $c_p = 1.0087 \frac{kJ}{kg^{\circ}K}$;
- la transformation thermodynamique dans la chambre de combustion est isobare.

Questions

- Dessiner un schéma avec les connections entre les machines, indiquer les états en entrée et sortie de chaque machine tracer le cycle sur le diagramme *T-s* (i.e. température entropie massique).
- Calculer la puissance-chaleur donnée par la chambre de combustion au cycle.
- Calculer la puissance-chaleur donnée par les gaz de sortie de la turbine à l'atmosphère.
- Déterminer les températures à la sortie du compresseur et à l'entrée de la turbine.
- Calculer le débit massique de l'air du cycle.

Solution

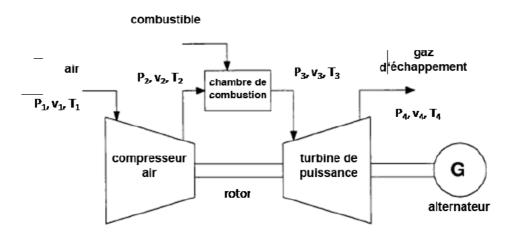


Fig. 1 – Machines et leur connections dans le cycle de Brayton.

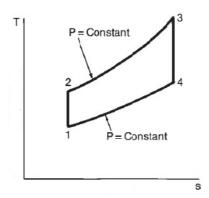


Fig. 2 – Cycle de Brayton sur le diagramme *T-s*

A travers la définition de rendement d'un cycle thermodynamique, on peut directement déterminer la puissance-chaleur donnée par la chambre de combustion, \dot{Q}_c^+

$$\eta = \frac{\dot{W}_t^- - \dot{W}_c^+}{\dot{Q}_c^+} = \frac{\dot{W}_{net}^-}{\dot{Q}_c^+}$$

$$\dot{Q}_c^+ = \frac{\dot{W}_{net}^-}{\eta} = \frac{10MW}{0.315} = 31.75MW$$

Pour déterminer la puissance-chaleur donnée à l'atmosphère par la centrale, on peut directement appliquer le primer principe de la thermodynamique au système entier représenté par la centrale. On a que :

$$\dot{W}_c^+ - \dot{W}_t^- + \dot{Q}_c^+ - \dot{Q}_{atm}^- = 0$$

$$\dot{Q}_{atm}^- = \dot{W}_c^+ - \dot{W}_t^- + \dot{Q}_c^+ = -\dot{W}_{net}^- + \dot{Q}_c^+ = -10MW + 31.75kW = 21.75MW$$

On peut calculer la température à la sortie du compresseur :

$$T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{\Gamma} = 310^{\circ} K \left(\frac{6bar}{1bar}\right)^{0.2857} = 517.2^{\circ} K$$

Et, aussi, la température d'entrée de la turbine :

$$T_3 = T_4 \left(\frac{p_4}{p_3}\right)^{-\Gamma} = 810^{\circ} K \left(\frac{1bar}{6bar}\right)^{-0.2857} = 1351.5^{\circ} K$$

On peut écrire les puissances-travaux de la turbine et du compresseur à travers les équations suivantes :

$$\dot{W}_t^- = \dot{m}c_p(T_3 - T_4)$$

 $\dot{W}_c^+ = \dot{m}c_p(T_2 - T_1)$

Donc:

$$\dot{W}_{t}^{-} - \dot{W}_{c}^{+} = \dot{W}_{net}^{-} = \dot{m}c_{p}(T_{3} - T_{4} - T_{2} + T_{1})$$

$$\dot{m} = \frac{\dot{W}_{net}^{-}}{c_{p}(T_{3} - T_{4} - T_{2} + T_{1})} = \frac{10000kW}{1.0087 \frac{kJ}{kg^{\circ}K} (1351.5^{\circ}K - 810^{\circ}K - 517.2^{\circ}K + 310^{\circ}K)} = 29.66 \frac{kg}{s}$$

Exercice #2 (1 points)

Une centrale électrique utilise une turbine hydraulique à réaction avec un grade de réaction de 0.4. La puissance électrique généré est de 1.1 MW et le débit volumétrique d'eau est de 3.4 m₃/s.

Hypothèses

- La densité volumétrique de l'eau est de $\varrho = 1000 \frac{kg}{m^3}$.
- Le rendement de la génératrice électrique connectée à la turbine de la centrale est unitaire.
- Le dégrée de réaction d'une turbine hydraulique est $\chi = \frac{w_{i(obt)} \frac{c_1^2}{2}}{w_{i(obt)}}$, ou la c_1 est la vitesse absolue de l'eau dans la section d'entrée de la rue.

Questions

- Dessiner la structure du distributeur et de la rue de la machine ainsi que les triangles de vitesses dans les sections d'entrée et sortie de la rue de la turbine. Il est aussi demandé d'indiquer le sens de rotation de la rue.
- Déterminer le travail obtenu par unité de masse, $\mathbf{w}_{i(obt)}$.
- Déterminer la vitesse absolue de l'eau dans la section d'entrée de la rue, a.

Solution

La structure du distributeur et de la rue de la machine sont indiqués dans la figure suivante avec le sens de rotation de la rue.

Fig. 3 – Structure du distributeur et de la rue de la machine, triangles de vitesses et sens de rotation de la rue.

Pour déterminer le travail obtenu par unité de masse, $\mathbf{w}_{i(obt)}$, on peut simplement utiliser la connaissance de la puissance générée par la centrale et le débit volumétrique de l'eau.

$$\begin{split} P_g &= \mathbf{w}_{i(obt)} \varrho \dot{v} \\ \mathbf{w}_{i(obt)} &= \frac{P_g}{\varrho \dot{v}} = \frac{1.1 \cdot 10^6 W}{1000 \frac{kg}{m^3} \cdot 3.4 \frac{m^3}{s}} = 323.5 \frac{J}{kg} \end{split}$$

A travers la définition du dégrée de réaction de la machine, on peut directement déterminer la vitesse absolue de l'eau dans la section d'entrée de la rue :

$$\chi = \frac{\mathbf{w}_{i(obt)} - \frac{c_1^2}{2}}{\mathbf{w}_{i(obt)}}$$

$$c_1 = \sqrt{2\mathbf{w}_{i(obt)}(1 - \chi)} = \sqrt{2 \cdot 323.5 \frac{J}{kg}(1 - 0.4)} = 19.7 \frac{m}{s}$$